An Analysis of Dimensionality Reduction Techniques for Visualizing Evolution

Andrea De Lorenzo1, Eric Medvet1, Tea Tušar2, Alberto Bartoli1

1: DIA, University of Trieste, Italy
2: DIS, Jožef Stefan Institute, Ljubljana, Slovenia

VizGEC (@GECCO), 14/7/2019, Prague (Czech Republic)

http://machinelearning.inginf.units.it
Visualization

Visualization:
- enables understanding
- fosters interest
- engages imagination
Landscape

landscape

/ˌland(ə)skæp/

noun

1. all the visible features of an area of land, often considered in terms of their aesthetic appeal.

"the soft colours of the Northumbrian landscape"
In population-, search-based optimization (and EC):

- where are the solutions? where are they going?
- is the optimization method (or EA) properly driving the population of solutions?
The problem of dimensionality

Problem:
- we can show/visualize data in 2D, at most 3D
- “many” interesting problems have much larger dimensionality

⇒ dimensionality reduction
The problem of dimensionality

Problem:

- we can show/visualize data in 2D, at most 3D
- “many” interesting problems have much larger dimensionality

⇒ dimensionality reduction

- Can we design a general visualization framework for any EA and problem?
- How does dimensionality reduction affect/impact usefulness of visualization?
Table of Contents

1. Scenario

2. Evaluation

3. Wrap-up
General EA/problem

- S: search space
 - may be discrete or continuous
- P_i: population at the i-th generation
 - as a sequence, i.e., solutions sorted according some criterion
- $P_1, \ldots, P_{n_{\text{gen}}}$: an evolutionary run

Goal: **visualizing the evolutionary run** in 2D
Dimensionality reduction

\[m : S^h \rightarrow (\mathbb{R} \times \mathbb{R})^h : \text{a dimensionality reduction} \] function mapping a sequence of solutions \(s_1, \ldots, s_h \) to a sequence of 2D points

- given a point \(s \), its mapping \((x, y)\) depends, in general, on all the solutions in the sequence
- \(S \) can be any space
General framework for the visualization

1. run EA and collect data \((P_1, \ldots, P_{n_{gen}})\)
2. concatenate generations obtaining \(s_1, \ldots, s_h\) (with \(h = \sum_i |P_i|\))
3. map to 2D obtaining \((x_1, y_1), \ldots, (x_h, y_h)\)
4. split sequence of 2D points in subsequences corresponding to generations
 - there is a 2D point for each solution of each generation
5. plot 2D points
Example: 3 solutions evolving for 30 generations

P_1, P_2, P_{30}

$s_1, s_2, s_3, s_4, s_5, s_6, \ldots, \ldots, \ldots, s_{88}, s_{89}, s_{90}$
Example: 3 solutions evolving for 30 generations

\[P_1 \quad P_2 \quad P_{30} \]

\[s_1, s_2, s_3, s_4, s_5, s_6, \ldots, \ldots, \ldots, s_{88}, s_{89}, s_{90} \]
Example: 3 solutions evolving for 30 generations

\[P_1 \quad P_2 \quad P_{30} \]

\[S_1, S_2, S_3, S_4, S_5, S_6, \ldots, \ldots, \ldots, S_{88}, S_{89}, S_{90} \]

\[m() \]

\[(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, \ldots, \ldots, (x_{88}, y_{88}), (x_{89}, y_{89}), (x_{90}, y_{90}) \]
Example: 3 solutions evolving for 30 generations

\[P_1, P_2, P_30 \]

\[s_1, s_2, s_3, s_4, s_5, s_6, \ldots, s_{88}, s_{89}, s_{90} \]

\[\downarrow \]

\[m() \]

\[(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_{88}, y_{88}), (x_{89}, y_{89}), (x_{90}, y_{90}) \]

mapped \(P_1 \)

mapped \(P_{30} \)
Example: 3 solutions evolving for 30 generations

\[P_1, P_2, P_{30} \]

\[s_1, s_2, s_3, s_4, s_5, s_6, \ldots, s_{88}, s_{89}, s_{90} \]

\[m() \]

\[(x_1, y_1), (x_2, y_2), (x_3, y_3), \ldots, (x_{88}, y_{88}), (x_{89}, y_{89}), (x_{90}, y_{90}) \]

mapped \(P_1 \)

mapped \(P_{30} \)
The general framework:

- any EA
- any* problem
 - only the search space S matters
 - *: provided that a function $m : S^h \to (\mathbb{R} \times \mathbb{R})^h$ is available

In general not trivial, e.g., S is the space of trees...
A special case:

- given a **dissimilarity function** $d : S \times S \rightarrow \mathbb{R}^+$
- consider the subclass of dimensionality reduction functions that
 1. compute the distance matrix D out of s_1, \ldots, s_h
 2. obtain $(x_1, y_1), \ldots, (x_h, y_h)$ out of D
Scenario

Dimensionality reduction

A special case:

- **given a dissimilarity function** $d : S \times S \rightarrow \mathbb{R}^+$
- consider the subclass of dimensionality reduction functions that
 1. compute the distance matrix D out of s_1, \ldots, s_h
 2. obtain $(x_1, y_1), \ldots, (x_h, y_h)$ out of D

Requirement “provided that a function $m : S^h \rightarrow (\mathbb{R} \times \mathbb{R})^h$ is available” met with suitable d for S

- might be easy to find, closely related to the domain
Table of Contents

1. Scenario
2. Evaluation
3. Wrap-up
Purpose

Does it work?
Purpose

Does it work? too broad

Instead:

- which dimensionality reduction works better?
- what/how to plot the 2D points?
Purpose

Does it work? too broad

Instead:
- which dimensionality reduction works better?
 - quantitatively
- what/how to plot the 2D points?
 - qualitatively
Which dimensionality reduction?

Which one works better... in terms of:

RQ1 ability to capture the movements of the population in the search space

RQ2 ability to capture the exploration-exploitation trade-off
Which dimensionality reduction?

Which one works better... in terms of:

RQ1 ability to capture the movements of the population in the search space

- movement is the essence of progress of the optimization

RQ2 ability to capture the exploration-exploitation trade-off
Which dimensionality reduction?

Which one works better... in terms of:

RQ1 ability to capture the movements of the population in the search space
- movement is the essence of progress of the optimization

RQ2 ability to capture the exploration-exploitation trade-off
- exploration/exploitation: the antagonistic cornerstones of search based optimization
- often explicitly targeted by EA parameters
Experimental setup

Any EA, any problem...
Experimental setup

Any EA, any problem...

Experimented with two (toy) tunable problems with different:

- S: either discrete (bit strings of l bits) or continuous (\mathbb{R}^l)
- “dimensionality” l
 - continuous w/ $l = 2$ is a “baseline”: no actual need of dim. red.
- number of optima n

Fitness is the distance (Hamming or Euclidean) to the closest optimum
Experimiental setup

Any EA, any problem…

Experimented with two (toy) tunable problems with different:
- \(S\): either discrete (bit strings of \(l\) bits) or continuous (\(\mathbb{R}^l\))
- “dimensionality” \(l\)
 - continuous \(w/\ l = 2\) is a “baseline”: no actual need of dim. red.
- number of optima \(n\)

Fitness is the distance (Hamming or Euclidean) to the closest optimum

And an EA with variants:
- simple non-overlapping generational model \(w/\) random init, tournament, suitable operators (depend on \(S\))
- same \(w/\) diversity promotion
 - fitness sharing with strength \(n_{NN}\) (0 means no promotion)
 - allows to explore different exploration-exploitation trade-offs

10 runs with \(n_{pop} = 50, n_{gen} = 50\)
Dimensionality reduction techniques

3 + 1 contenders:

- Multidimensional Scaling (MDS)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
 - devised for visualization, “reduce the tendency to crows points”
- Uniform Manifold Approximation and Projection (UMAP)
 - devised for visualization, fast
- Principal Component Analysis (PCA)
 - the +1: works only if $S = \mathbb{R}^l$

Distances: Hamming for bit strings, Euclidean for \mathbb{R}^l
RQ1: movements

Idea: how well the movements of the best individual are captured in 2D?

Procedure:

1. consider the trajectory (sequence of positions) of the best individual across the n_{gen} generations
 - $s_1^*, \ldots, s_{n_{gen}}^*$ in S
 - $(x_1^*, y_1^*), \ldots, (x_{n_{gen}}^*, y_{n_{gen}}^*)$ in 2D

2. compute inter-generation best distances from the trajectory
 - $\Delta^S = (\delta^S_1, \ldots, \delta^S_{n_{gen}-1})$ in S using a suitable d
 - $\Delta^{2D} = (\delta^{2D}_1, \ldots, \delta^{2D}_{n_{gen}-1})$ in 2D using Euclidean distance

3. compute the Pearson’s correlation between Δ^S and Δ^{2D}
 - ideally 1; the greater, the better
RQ1: results, overall

\(n = 1, \ n_{\text{NN}} = 0 \)

<table>
<thead>
<tr>
<th>Bit string optimization</th>
<th>Continuous optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td>PCA</td>
<td></td>
</tr>
<tr>
<td>MDS</td>
<td>0.95</td>
</tr>
<tr>
<td>t-SNE</td>
<td>0.59</td>
</tr>
<tr>
<td>UMAP</td>
<td>0.35</td>
</tr>
</tbody>
</table>

⇒ MDS is the best performer
RQ1: results, overall

\[n = 1, \ n_{NN} = 0 \]

<table>
<thead>
<tr>
<th></th>
<th>Bit string optimization</th>
<th>Continuous optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>PCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDS</td>
<td>0.95</td>
<td>0.91</td>
</tr>
<tr>
<td>t-SNE</td>
<td>0.59</td>
<td>0.58</td>
</tr>
<tr>
<td>UMAP</td>
<td>0.35</td>
<td>0.52</td>
</tr>
</tbody>
</table>

⇒ MDS is the best performer
RQ1: results, good/bad examples, detail

MDS on \mathbb{R}^{10}, $n = 1$, $n_{NN} = 1$

t-SNE on \mathbb{R}^{5}, $n = 1$, $n_{NN} = 1$
RQ2: exploration-exploitation trade-off

Idea: how well exploration rate is captured in 2D?

- No single, widely accepted way of measuring if an ongoing search is exploring or exploiting

Borrow existing definition, **Similarity to Closest Neighbour (SCN)**:

- measured at each birth: the distance from the closest solution in the history of the search up to current generation
- based on a dissimilarity measure \(d\) (hence actually a dissimilarity)

\[
SCN^S(s) = \min_{j<i} \min_{s' \in P_j} d(s, s')
\]

- the larger, the more \(s\) is exploring
RQ2: measuring exploration-exploitation

Procedure:

1. for each solution s at each generation, compute:
 - $SCN^S(s)$ in S, using a d suitable to S
 - $SCN^{2D}(x, y)$ in 2D, using a Euclidean distance

2. compute the medians \overline{SCN}^S and \overline{SCN}^{2D}

3. for each i-th generation, compute exploration rate τ_i as the fraction of solutions with SCN larger than median value:
 - τ^S in S
 - τ^{2D} in 2D

4. measure the root mean squared error (RMSE) between the two τ signals, in S and in 2D
 - ideally 0; the lower, the better
RQ2: results, overall

$n = 1, n_{NN} = 0$ (top); $n = 4, n_{NN} = 4$ (bottom)

<table>
<thead>
<tr>
<th></th>
<th>Bit string optimization</th>
<th>Continuous optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>PCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDS</td>
<td>0.43</td>
<td>0.29</td>
</tr>
<tr>
<td>t-SNE</td>
<td>0.49</td>
<td>0.46</td>
</tr>
<tr>
<td>UMAP</td>
<td>0.54</td>
<td>0.53</td>
</tr>
</tbody>
</table>

MDS is again the best performer
RQ2: results, overall

\(n = 1, \ n_{NN} = 0 \) (top); \(n = 4, \ n_{NN} = 4 \) (bottom)

<table>
<thead>
<tr>
<th></th>
<th>Bit string optimization</th>
<th>Continuous optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16 20 24 32</td>
<td>2 5 10 15</td>
</tr>
<tr>
<td>PCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDS</td>
<td>0.43 0.29 0.23 0.55</td>
<td>0.00 0.45 0.56 0.60</td>
</tr>
<tr>
<td>t-SNE</td>
<td>0.49 0.46 0.47 0.58</td>
<td>0.50 0.56 0.57 0.56</td>
</tr>
<tr>
<td>UMAP</td>
<td>0.54 0.53 0.56 0.64</td>
<td>0.55 0.63 0.66 0.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCA</td>
<td></td>
<td>0.00 0.43 0.49 0.54</td>
</tr>
<tr>
<td>MDS</td>
<td>0.37 0.37 0.36 0.54</td>
<td>0.01 0.41 0.49 0.55</td>
</tr>
<tr>
<td>t-SNE</td>
<td>0.48 0.49 0.49 0.57</td>
<td>0.51 0.59 0.61 0.54</td>
</tr>
<tr>
<td>UMAP</td>
<td>0.53 0.56 0.56 0.63</td>
<td>0.56 0.65 0.68 0.65</td>
</tr>
</tbody>
</table>

⇒ MDS is again the best performer
RQ2: results, good/bad examples, detail

MDS on \mathbb{R}^{15}, $n = 1$, $n_{NN} = 1$

τ^S_i τ^2D_i

Generation

0 20 40

0.2 0.4 0.6 0.8 1

t-SNE on \mathbb{R}^{15}, $n = 2$, $n_{NN} = 2$

τ^S_i τ^2D_i

Generation

0 20 40

0.2 0.4 0.6 0.8 1
RQ3: what/how to plot the 2D points?

Many non-primary goals:

- show fitness
- show ancestry
- highlight trajectory of the best solution
- highlight history of the previous populations

Two approaches for showing evolution progress:

- 2D animation: one frame for each generation
- 3D: stacked 2D layers, one for each generation

Interactivity
2D animation and non-primary goals

MDS on \mathbb{R}^{15}, $n = 3$, $n_{\text{NN}} = 4$
3D stacked: different runs, dim. reduction functions

\mathbb{R}^2,
$n = 1,
 n_{NN} = 0$

\mathbb{R}^{15},
$n = 3,
 n_{NN} = 4$

$\{0, 1\}^{16}$,
$n = 3,
 n_{NN} = 4$
Demo
Table of Contents

1. Scenario
2. Evaluation
3. Wrap-up
General framework for visualizing evolution:

- can be done, requires distance in S and dimensionality reduction
- MDS works best
 - does not “arbitrarily” magnify crowded regions

But...

- cannot be used online
- computationally expensive
 - minutes with MDS, tens of seconds with UMAP for each run
Thanks!